1.

Let f:(2, ∞) → R: f(x) = \(\sqrt{x-2}\), and g: (2, ∞) → R: g(x) = \(\sqrt{x+2}\) Find: (i) (f + g) (x) (ii) (f - g) (x) (iii) (fg) (x)

Answer»

Given

 f(x) = \(\sqrt{x-2}\): x > and g(x) = \(\sqrt{x+2}\): x > 2

(i) To find: (f + g) (x) 

Domain(f) = (2, ∞) 

Range(f) = (0, ∞) 

Domain(g) = (2, ∞) 

Range(g) = (2, ∞) 

(f + g) (x) = f(x) + g(x)

\(\sqrt{x-2}\) + \(\sqrt{x+2}\)

Therefore,

(f + g) (x) = \(\sqrt{x-2}\) + \(\sqrt{x+2}\)

(ii) To find:(f - g)(x)

Range(g) ⊆ Domain(f) 

Therefore, 

(f - g)(x) exists. 

(f - g)(x) = f(x) – g(x)

\(\sqrt{x-2}\) + \(\sqrt{x+2}\)

Therefore,

(f - g) (x) = \(\sqrt{x-2}\) - \(\sqrt{x+2}\)

(iii) To find:(fg)(x) 

(fg)(x) = f(x).g(x)

\(\sqrt{(x-2)}\) .\(\sqrt{(x+2)}\)

\(\sqrt{(x-2)(x+2)}\)

\(\sqrt{(x^2+2^2)}\) ( ∵  a2 - b2 = (a - b)(a + b))

\(\sqrt{x^2-4}\)

Therefore,

(fg)(x) = \(\sqrt{x^2-4}\)



Discussion

No Comment Found