1.

Let f : [a, b] → R be differentiable on [a, b] and k ∈ R. Let f(a) = 0 = f(b). Also let J(x) = f'(x) + kf(x). Then (A) J(x) > 0 for all x ∈ [a, b] (B) J(x) < 0 for all x ∈ [a, b] (C) J(x) = 0 has at least one root in (a, b) (D) J(x) = 0 through (a, b)

Answer»

The correct option (C) J(x) = 0 has at least one root in (a, b)  

Explanation:

Let g(x) = ekx f(x) 

f(a) = 0 = f(b) 

by rolles theorem 

g'(c) = 0, c  (a, b) 

g'(x) = ekxf'(x) + kekxf(x) 

g'(c) = 0 

ekc(f'(c) + kf(c) = 0 

⇒ f'(c) + kf(c) = 0 for at least one c in (a, b)



Discussion

No Comment Found

Related InterviewSolutions