InterviewSolution
Saved Bookmarks
| 1. |
Let f : N → N : f(x) = 2x, g : N → N : g(y) = 3y + 4 and h : N → N : h(z) = sin z. Show that h o (g o f ) = (h o g) o f. |
|
Answer» To show: h o (g o f ) = (h o g) o f Formula used: (i) f o g = f(g(x)) (ii) g o f = g(f(x)) Given: (i) f : N → N : f(x) = 2x (ii) g : N → N : g(y) = 3y + 4 (iii) h : N → N : h(z) = sin z Solution: We have, LHS = h o (g o f ) ⇒ h o (g(f(x)) ⇒ h(g(2x)) ⇒ h(3(2x) + 4) ⇒ h(6x +4) ⇒ sin(6x + 4) RHS = (h o g) o f ⇒ (h(g(x))) o f ⇒ (h(3x + 4)) o f ⇒ sin(3x+4) o f Now let sin(3x+4) be a function u RHS = u o f ⇒ u(f(x)) ⇒ u(2x) ⇒ sin(3(2x) + 4) ⇒ sin(6x + 4) = LHS Hence Proved |
|