

InterviewSolution
Saved Bookmarks
1. |
Let `f: R-{-4/3}->R`be a function as `f(x)=(4x)/(3x+4)`. The inverse of f is map, `g: R a ngef->R-{-4/3}`given by.(a) `g(y)=(3y)/(3-4y)` (b) `g(y)=(4y)/(4-3y)`(c) `g(y)=(4y)/(3-4y)` (d) `g(y)=(3y)/(4-3y)`A. `(4y)/((4-3y))`B. `(4y)/((4y+3))`C. `(4y)/((3y-4))`D. none of these |
Answer» Correct Answer - A `y=(4x)/(3x+4) rArr x =(4x)/((4-3y)) rArr f^(-1) (y) =(4y)/((4-3y))` |
|