InterviewSolution
Saved Bookmarks
| 1. |
Let f : R → R and g : R → R defined by f(x) = x2 and g(x) = (x + 1). Show that g o f ≠ f o g. |
|
Answer» To prove: g o f ≠ f o g Formula used: (i) f o g = f(g(x)) (ii) g o f = g(f(x)) Given: (i) f : R → R : f(x) = x2 (ii)g : R → R g(x) = (x + 1) We have, f o g = f(g(x)) = f(x + 7) f o g = (x + 7)2 = x 2 + 14x + 49 g o f = g(f(x)) = g(x2) g o f = (x2 + 1) = x2 + 1 Clearly g o f ≠ f o g Hence Proved |
|