1.

Let f : R → R be defined by\(f(x)=\begin{cases}2x+3,&when& x<-2\\x^2-2,&when&-2\leq x\leq 3\\3x-1,&when&x>3\end{cases}\)Find (i) f(2) (ii) f(4) (iii) f( - 1) (iv) f( - 3).

Answer»

i)f(2) 

Since f(x) = x2 - 2 , when x = 2 

∴ f(2) = (2)2 - 2 = 4 - 2 = 2 

∴f(2) = 2 

ii)f(4) 

Since f(x) = 3x - 1 , when x = 4 

∴f(4) = (3×4) - 1 = 12 - 1 = 11 

∴f(4) = 11 

iii)f( - 1) 

Since f(x) = x2 - 2 , when x = - 1 

∴ f( - 1) = ( - 1)2 - 2 = 1 - 2 = - 1 

∴f( - 1) = - 1 

iv)f( - 3) 

Since f(x) = 2x + 3 , when x = - 3 

∴f( - 3) = 2×( - 3) + 3 = - 6 + 3 = - 3 

∴f( - 3) = - 3



Discussion

No Comment Found