InterviewSolution
Saved Bookmarks
| 1. |
Let f : R → R : f(x) = 10x + 7. Find the function g : R→ R : g o f = f o g = Ig. |
|
Answer» To find: the function g : R → R : g o f = f o g = Ig Formula used: (i) g o f = g(f(x)) (ii) f o g = f(g(x)) Given: f : R → R : f(x) = 10x + 7 We have, f(x) = 10x + 7 Let f(x) = y ⇒ y = 10x + 7 ⇒ y – 7 = 10x \(\Rightarrow x= \frac{y-7}{10}\) Let \(g(y)=\frac{y-7}{10}\) where g: R → R g o f = g(f(x)) = g(10x + 7)\(=\frac{(10x+7)-7}{10}\) = x = Ig f o g = f(g(x)) =\(f(\frac{x-7}{10})\) \(=10(\frac{x-7}{10})\) \(=10(\frac{x-7}{10})+7\) = x – 7 + 7 = x Clearly g o f = f o g = Ig \(g(x)=\frac{x-7}{10}\) |
|