1.

Let f : R → R : f(x) = 10x + 7. Find the function g : R→ R : g o f = f o g = Ig.

Answer»

To find: the function g : R → R : g o f = f o g = Ig

Formula used: (i) g o f = g(f(x))

(ii) f o g = f(g(x))

Given: f : R → R : f(x) = 10x + 7

We have,

f(x) = 10x + 7

Let f(x) = y

⇒ y = 10x + 7

⇒ y – 7 = 10x

\(\Rightarrow x= \frac{y-7}{10}\)

Let \(g(y)=\frac{y-7}{10}\) where g: R → R

g o f = g(f(x)) = g(10x + 7)\(=\frac{(10x+7)-7}{10}\)

= x

= Ig

f o g = f(g(x)) =\(f(\frac{x-7}{10})\)

\(=10(\frac{x-7}{10})\)

\(=10(\frac{x-7}{10})+7\) 

= x – 7 + 7

= x

Clearly g o f = f o g = Ig

\(g(x)=\frac{x-7}{10}\)



Discussion

No Comment Found