InterviewSolution
| 1. |
Let f : R → R : f(x) = (2x + 1) and g : R → R : g(x) = (x2 - 2). Write down the formulae for (i) (g o f) (ii) (f o g) (iii) (f o f) (iv) (g o g) |
|
Answer» (i) g o f To find: g o f Formula used: g o f = g(f(x)) Given: (i) f : R → R : f(x) = (2x + 1) (ii) g : R → R : g(x) = (x2 - 2) Solution: We have, g o f = g(f(x)) = g(2x + 1) = [ (2x + 1)2 – 2 ] ⇒ 4x2 + 4x + 1 – 2 ⇒ 4x2 + 4x – 1 g o f (x) = 4x2 + 4x – 1 (ii) f o g To find: f o g Formula used: f o g = f(g(x)) Given: (i) f : R → R : f(x) = (2x + 1) (ii) g : R → R : g(x) = (x2 - 2) Solution: We have, f o g = f(g(x)) = f(x2 - 2) = [ 2(x2 - 2) + 1 ] ⇒ 2x2 - 4 + 1 ⇒ 2x2 – 3 f o g (x) = 2x2 – 3 (iii) f o f To find: f o f Formula used: f o f = f(f(x)) Given: (i) f : R → R : f(x) = (2x + 1) Solution: We have, f o f = f(f(x)) = f(2x + 1) = [ 2(2x + 1) + 1 ] ⇒ 4x + 2 + 1 ⇒ 4x + 3 f o f (x) = 4x+ 3 (iv) g o g To find: g o g Formula used: g o g = g(g(x)) Given: (i) g : R → R : g(x) = (x2 - 2) Solution: We have, g o g = g(g(x)) = g(x2 - 2) = [ (x2 - 2)2 – 2] ⇒ x4 -4x2 + 4 - 2 ⇒ x 4 -4x2 + 2 g o g (x) = x4 -4x2 + 2 |
|