1.

Let f : R → R : f(x) = (3 - x3)1/3. Find f o f.

Answer»

To find: f o f

Formula used: (i) f o f = f(f(x))

Given: (i) f : R → R : f(x) = (3 - x3)1/3

We have,

f o f = f(f(x)) =(3 - x3)1/3

f o f ={3 -{(3 - x3)1/3}]1/3

= [3 - (3 - x3)]1/3

= [3 - 3 + x3]1/3

= [x3]1/3

= x

f o f (x) = x



Discussion

No Comment Found