

InterviewSolution
Saved Bookmarks
1. |
Let \(f:R→R:f(x)=\frac{2x-7}{4}\) be an invertible function. Find f-1. |
Answer» To find: f-1 Given: \(f:R→R:f(x)=\frac{2x-7}{4}\) We have, \(f(x)=\frac{2x-7}{4}\) Let f(x) = y such that \(y\in R\) \(\Rightarrow y=\frac{2x-7}{4}\) ⇒ 4y = 2x – 7 ⇒ 4y + 7 = 2x \(\Rightarrow x=\frac{4y+7}{2}\) \(\Rightarrow f^{-1}=\frac{4y+7}{2}\) \(f^{-1}(y)=\frac{4y+7}{2}\) for all \(y\in R\) |
|