1.

Let \(f:R→R:f(x)=\frac{2x-7}{4}\) be an invertible function. Find f-1.

Answer»

To find: f-1

Given: \(f:R→R:f(x)=\frac{2x-7}{4}\)

We have,

\(f(x)=\frac{2x-7}{4}\)

Let f(x) = y such that \(y\in R\)

\(\Rightarrow y=\frac{2x-7}{4}\)

⇒ 4y = 2x – 7

⇒ 4y + 7 = 2x

\(\Rightarrow x=\frac{4y+7}{2}\)

\(\Rightarrow f^{-1}=\frac{4y+7}{2}\)

\(f^{-1}(y)=\frac{4y+7}{2}\) for all \(y\in R\) 



Discussion

No Comment Found