1.

Let f : R → R : f(x) = (x2 + 3x + 1) and g: R → R : g(x) = (2x - 3). Write down the formulae for (i) g o f (ii) f o g (iii) g o g

Answer»

(i) g o f 

To find: g o f 

Formula used: g o f = g(f(x)) 

Given: (i) f : R → R : f(x) = (x2 + 3x + 1) 

(ii) g: R → R : g(x) = (2x - 3) 

Solution: We have, 

g o f = g(f(x)) = g(x2 + 3x + 1) = [ 2(x2 + 3x + 1) – 3 ] 

⇒ 2x2 + 6x + 2 – 3 

⇒ 2x2 + 6x – 1 

g o f (x) = 2x2 + 6x – 1 

(ii) f o g 

To find: f o g 

Formula used: f o g = f(g(x)) 

Given: (i) f : R → R : f(x) = (x2 + 3x + 1) 

(ii) g: R → R : g(x) = (2x - 3) 

Solution: We have, 

f o g = f(g(x)) = f(2x - 3) = [ (2x - 3)2 + 3(2x – 3) + 1 ] 

⇒ 4x2 - 12x + 9 + 6x – 9 + 1 

⇒ 4x2 - 6x + 1 

f o g (x) = 4x2 - 6x + 1 

(iii) g o g 

To find: g o g 

Formula used: g o g = g(g(x)) 

Given: (i) g: R → R : g(x) = (2x - 3) 

Solution: We have, 

g o g = g(g(x)) = g(2x - 3) = [ 2(2x – 3) - 3 ] 

⇒ 4x – 6 - 3 

⇒ 4x - 9 

g o g (x) = 4x – 9



Discussion

No Comment Found