1.

Let f : R → R : f(x) = x2, g : R → R : g(x) = tan xand h : R → R : h(x) = log x.Find a formula for h o (g o f).Show that [h o (g o f)] \(\sqrt{\frac{\pi}{4}}=0\)

Answer»

To find: formula for h o (g o f)

To prove: Show that [h o (g o f)] \(\sqrt{\frac{\pi}{4}}=0\)

Formula used: f o f = f(f(x))

Given: (i) f : R → R : f(x) = x2

(ii) g : R → R : g(x) = tan x

(iii) h : R → R : h(x) = log x

Solution: We have,

h o (g o f) = h o g(f(x)) = h o g(x2)

= h(g(x2)) = h (tan x2)

= log (tan x2)

h o (g o f) = log (tan x2)

For,  [h o (g o f)] \(\sqrt{\frac{\pi}{4}}=0\)

\(=log[tan(\frac{\pi}{4}^2)]\) 

\(=log[tan\frac{\pi}{4}]\)

= log 1

= 0

Hence Proved.



Discussion

No Comment Found