InterviewSolution
Saved Bookmarks
| 1. |
Let f : R → R : f(x) = x2, g : R → R : g(x) = tan xand h : R → R : h(x) = log x.Find a formula for h o (g o f).Show that [h o (g o f)] \(\sqrt{\frac{\pi}{4}}=0\) |
|
Answer» To find: formula for h o (g o f) To prove: Show that [h o (g o f)] \(\sqrt{\frac{\pi}{4}}=0\) Formula used: f o f = f(f(x)) Given: (i) f : R → R : f(x) = x2 (ii) g : R → R : g(x) = tan x (iii) h : R → R : h(x) = log x Solution: We have, h o (g o f) = h o g(f(x)) = h o g(x2) = h(g(x2)) = h (tan x2) = log (tan x2) h o (g o f) = log (tan x2) For, [h o (g o f)] \(\sqrt{\frac{\pi}{4}}=0\) \(=log[tan(\frac{\pi}{4}^2)]\) \(=log[tan\frac{\pi}{4}]\) = log 1 = 0 Hence Proved. |
|