1.

Let f: R+→ R, where R+ is the set of all positive real numbers, be such that f(x) = logex. Determine :i. the image set of the domain of f ii. {x: f(x) = –2} iii. whether f(xy) = f(x) + f(y) holds.

Answer»

Given,

f : R+→ R and f(x) = logex. 

i. the image set of the domain of f : 

Domain of f = R+ 

(set of positive real numbers) 

We know the value of logarithm to the base e (natural logarithm) can take all possible real values. 

Hence, 

The image set of f is the set of real numbers. 

Thus,

The image set of f = R 

ii. {x: f(x) = –2} 

Given,

f(x) = –2 

⇒ logex = –2 

∴ x = e-2 

[∵ logba = c ⇒ a = bc

Thus, 

{x: f(x) = –2} = {e –2} 

iii. whether f(xy) = f(x) + f(y) holds. 

We have, 

f(x) = loge

⇒ f(y) = loge

Now, 

let us consider f(xy). 

f(xy) = loge(xy) 

⇒ f(xy) = loge(x × y) 

[∵ logb(a×c) = logba + logbc] 

⇒ f(xy) = logex + loge

∴ f(xy) = f(x) + f(y) 

Hence, 

The equation f(xy) = f(x) + f(y) holds.



Discussion

No Comment Found