1.

Let f : R to R be a function defined by f (x + y) = f (x).f (y) and f (x) ne 0 for andy x. If f '(0) exists, show that f '(x) = f (x). F'(0) AA x in R if f '(0) = log 2 find f (x).

Answer»


ANSWER :`F (X)= 2 ^(x)`


Discussion

No Comment Found