1.

Let `f : R to R : f (x) =(3-x^(3))^(1//3).`Find f o f

Answer» Correct Answer - `( f o f) (x) =x`
`(f o g) (x) =f{f(x)}=f{(3-x^(3))^(1//3)} =f(y)" where " y=(3-x^(3))^(1//3)`
` =(3-y^(3))^(1//3) ={3 -(3 -x^(3))}^(1//3)= (x^(3))^(1//3)=x`
`:.` (f o f) (x) =x


Discussion

No Comment Found