1.

Let `f:""RrarrR`be a positiveincreasing function with `lim_(xrarroo)f(3x)/(f(x))=1`. Then `lim_(xrarroo)f(2x)/(f(x))=`(1) `2/3`(2) `3/2`(3) 3 (4)1

Answer» `x>0 => 0 < f(2x) < f(2x) < f(3x) `
`0<1< (f(2x))/(f(x)) < (f(3x))/(f(x))`
`1 <= lim_(x-> oo) (f(2x))/(f(x)) <= lim_(x->oo) (f(3x))/(f(x))`
`1 <= lim_(x-> oo) (f(2x))/(f(x)) <= 1`
`lim_(x-> oo) (f(2x))/(f(x)) = 1`
answer


Discussion

No Comment Found