InterviewSolution
Saved Bookmarks
| 1. |
Let `f:RtoR:f(x)=x^(2)+1`. Find (i) `f^(-1){-4}` (ii) `f^(-1){10}` (iii) `f^(-1){5,17}`. |
|
Answer» It is given that `f(x)=x^(2)+1`. (i) Let `f^(1)(-4)=x`. Then, `f(x)=-4impliesx^(2)+1=-4impliesx^(2)=-5`. But, there is no real value of x whose square is -5. `:.f^(1){-4}=phi`. (ii) Let `:.f^(1)(10)=x`. `f(x)=10impliesx^(2)+1=-4impliesx^(2)=9impliesx=pm3`. `:.f^(1){10}={-3,3}`. (iii) Let `f^(1)(5)=x`. Then, `f(x)=5impliesx^(2)+1=5impliesx^(2)=4impliesx=pm2`. `:.f^(1){5}={-2,2}`. Let `f^(1)(17)=x`. Then, `f(x)=17impliesx^(2)+1=17impliesx^(2)=16impliesx=pm4`. `:.f^(1){17}={-4,4}`. Hence, `f^(1){5,17}=-{-2,2,-4,4}`. |
|