1.

Let `f(x)=(1+b^(2))x^(2)+2bx+1` and let m(b) be the minimum value of f (x). As b varies, the range of m (b) isA. `[0,1]`B. `[0,(1)/(2)]`C. `[(1)/(2),1]`D. `(0,1]`

Answer» Correct Answer - D
Given, `f(x)=(1+b^(2))x^(2)+2bx+1`
`=(1+b^(2))(x+(b)/(1+b^(2)))^(2)+1-(b^(2))/(1+b^(2))`
m(b) = minimum value of `f(x)=(1)/(1+b^(2))` is positive and m(b) varies from 1 to 0, so range = (0, 1]


Discussion

No Comment Found