1.

Let f(x) = a_(1) cos (alpha_(1) + x) + a_(2) cos (alpha_(2) + x) +…+ a_(n) cos (alpha_(n) + x). If f(x) vanishes for x = 0 and x = x_(1) (where x_(1) ne k pi, k in Z) then

Answer»

`a_(1) cos alpha_(1) + a_(2) cos alpha_(2) + …+ a_(n) cos alpha_(n) = 0`
`a_(1) sin alpha_(1) + a_(2) sin alpha_(2) + …+ a_(n) sin alpha_(n) = 0`
f(x) = 0 has only two solutions `0, x_(1)`
f(x) is IDENTICALLY zero `AA x`

ANSWER :A::B::D


Discussion

No Comment Found