1.

Let `f(x)=(alpha x)/(x+1), x ne -1.` Then, for what value of `alpha " is " f[f(x)]=x` ?A. `sqrt(2)`B. `-sqrt(2)`C. 1D. -1

Answer» Correct Answer - D
Given, `f(x)=(alphax)/(x+1)`
`f[f(x)]=f((alphax)/(x+1))=(alpha((alphax)/(x+1)))/((alphax)/(x+1)+1)`
`=((alpha^(2)x)/(x+1))/((alphax+(x+1))/(x+1))=(alpha^(2)x)/((alpha+1)x+1)=x` [given] ...(i)
`rArr alpha^(2)x=(alpha +1)x^(2)+x`
`rArr x[alpha^(2)-(alpha +1)x-1]=0`
`rArr x(alpha +1)(alpha -1-x)=0`
`rArr alpha -1=0 and alpha +1=0`
`rArr alpha = -1`
But `alpha =1` does nto satisfy the Eq. (i).


Discussion

No Comment Found