1.

Let `f(x)` be a non-positive continuous function and `F(x)=int_(0)^(x)f(t)dt AA x ge0` and `f(x) ge cF(x)` where `c lt 0` and let `g:[0, infty) to R` be a function such that `(dg(x))/(dx) lt g(x) AA x gt 0` and `g(0)=0` The number of solution(s) of the equation `|x^(2)+x-6|=f(x)+g(x)` is/areA. 2B. 1C. 0D. 3

Answer» Correct Answer - C
`|x^(2)+x-6|=f(x) + g(x)` or `|x^(2)+x-6|=g(x)`
Thus, no solution exists.


Discussion

No Comment Found

Related InterviewSolutions