1.

Let `f(x)={(sinx+cosx",",0 lt x lt (pi)/(2)),(a",",x=pi//2),(tan^(2)x+"cosec"x",",pi//2 lt x lt pi):}` Then its odd extension isA. `{(-tan^(2)x-"cosec"x",",-pi lt x lt -(pi)/(2)),(-a",",x=-(pi)/(2)),(-sinx+cosx",",-(pi)/(2) lt x lt 0 ):}`B. `{(-tan^(2)x+"cosec"x",",-pi lt x lt -(pi)/(2)),(-a",",x=-(pi)/(2)),(sinx-cosx",",-(pi)/(2) lt x lt 0 ):}`C. `{(-tan^(2)x+"cosec"x",",-pi lt x lt -(pi)/(2)),(a",",x=-(pi)/(2)),(sinx-cosx",",-(pi)/(2) lt x lt 0 ):}`D. `{(tan^(2)x+"cosec"x",",-pi lt x lt -(pi)/(2)),(-a",",x=-(pi)/(2)),(sinx+cosx",",-(pi)/(2) lt x lt 0 ):}`

Answer» Correct Answer - B
For odd function,
`f(x)= -f(-x)`
` = -{(sin(-x)+cos(-x)",",0 lt -x lt pi//2),(a",",-x=pi//2),(tan^(2)(-x)+"cosec"(-x)",",pi//2 lt -x lt pi):}`
` ={(sinx-cosx",", -pi//2 lt x lt 0),(-a",",x= -pi//2),(-tan^(2)x+"cosec"x",",-pi lt x lt -pi//2 ):}`


Discussion

No Comment Found