InterviewSolution
Saved Bookmarks
| 1. |
Let f(x) = |x – 1|. Then, A. f(x2) = [f(x)]2 B. f(x + y) = f(x) f(y) C. f(|x|) = |f(x)| D. None of these |
|
Answer» Option : (D) f(x) = |x-1| f(x2) = |x2-1| f(x)2 = (x-1)2 = x2+1-2x So, f(x2) ≠ [f(x)]2 f(x + y) = |x+y-1| f(x)f(y) = (x-1)(y-1) So, f(x + y) ≠ f(x)f(y) f(|x|) = ||x|-1| Therefore, Option D is correct. |
|