1.

Let f(x) = |x – 1|. Then, A. f(x2) = [f(x)]2 B. f(x + y) = f(x) f(y) C. f(|x|) = |f(x)| D. None of these

Answer»

Option : (D)

f(x) = |x-1| 

f(x2) = |x2-1| 

f(x)= (x-1)2 

= x2+1-2x 

So, 

f(x2) ≠ [f(x)]2 

f(x + y) = |x+y-1| 

f(x)f(y) = (x-1)(y-1) 

So, 

f(x + y) ≠ f(x)f(y) 

f(|x|) = ||x|-1| 

Therefore, 

Option D is correct.



Discussion

No Comment Found