InterviewSolution
Saved Bookmarks
| 1. |
Let`f(x)=x^2`and`g(x)" "=" "2x" "+" "1`betwo real functions. Find `(f" "+" "g)``(x)`, `(f" "" "g)" "(x)`, `(fg)" "(x)`, `(f/g)(x)`. |
|
Answer» Here, dom (f)=R and dom (g) =R. `:."dom "(f)nn"dom "(g)=(RnnR)=R`. (i) `(f+g):RtoR` is given by `(f+g)(x)=f(x)+g(x)=x^(2)+(2x+1)=(x+1)^(2)`. (ii) `(f-g):RtoR` is given by `(f-g)(x)=f(x)-g(x)=x^(2)-(2x+1)=(x^(2)-2x-1)`. (iii) `(fg):RtoR` is given by `(fg)(x)=f(x).g(x)=x^(2).(2x+1)=(2x^(3)+x^(2))` (iv) `{x:g(x)=0}={x:2x+1=0}={(-1)/(2)}`. `:."dom "((f)/(g))=RnnR-{(-1)/(2)}=R-{(-1)/(2)}`. The function `(f)/(g):R-{(-1)/(2)}toR` is given by `((f)/(g))(x)=(f(x))/(g(x))=(x^(2))/(2x+1),xne(-1)/(2)`. |
|