1.

Let `f(x){{:((x)/(|x|)",",xne0),(0",",x=0):}` Show that `lim_(xrarr0)f(x)` does not exist.

Answer» `lim_(xto0^(+))f(x)=lim_(hto0)(0+h)=lim_(hto0)f(h)=lim_(hto0|-h|)=lim_(hto0)h/h=1" "[becausehgt0]`
`lim_(xto0^(-))f(x)=lim_(hto0)f(0-h)=lim_(hto0)(-h)/(|-h|)=lim_(hto0)(-h)/(h)=-1.`
`thereforelim_(xto0^(+))f(x)nelim_(xto0)f(x)and so limf(x)` does not exist.


Discussion

No Comment Found