1.

Let f : Z → Z : f(x) = 2x. Find g : Z → Z : g o f = IZ.

Answer»

To find: g : Z → Z : g o f = IZ

Formula used: (i) f o g = f(g(x))

(ii) g o f = g(f(x))

Given: (i) g : Z → Z : g o f = IZ

Solution: We have,

f(x) = 2x

Let f(x) = y

⇒ y = 2x

\(\Rightarrow y=\frac{y}{2}\)

\(\Rightarrow x=\frac{y}{2}\)

let \(g(y)=\frac{y}{2}\)

Where g: Z → Z

For g o f,

⇒ g(f(x))

⇒ g(2x)

\(\Rightarrow \frac{2x}{2}\)

⇒ x = IZ

Clearly we can see that (g o f) = x = IZ

The required function is g(x) = \( \frac{2x}{2}\)



Discussion

No Comment Found