InterviewSolution
Saved Bookmarks
| 1. |
Let f : Z → Z : f(x) = 2x. Find g : Z → Z : g o f = IZ. |
|
Answer» To find: g : Z → Z : g o f = IZ Formula used: (i) f o g = f(g(x)) (ii) g o f = g(f(x)) Given: (i) g : Z → Z : g o f = IZ Solution: We have, f(x) = 2x Let f(x) = y ⇒ y = 2x \(\Rightarrow y=\frac{y}{2}\) \(\Rightarrow x=\frac{y}{2}\) let \(g(y)=\frac{y}{2}\) Where g: Z → Z For g o f, ⇒ g(f(x)) ⇒ g(2x) \(\Rightarrow \frac{2x}{2}\) ⇒ x = IZ Clearly we can see that (g o f) = x = IZ The required function is g(x) = \( \frac{2x}{2}\) |
|