InterviewSolution
Saved Bookmarks
| 1. |
Let `I_(n)=inttan^(n)xdx , n gt 1`. `I_(4)+I_(6)=atan^(5)x+bx^(5)+C` , where C is a constant of integration , then the ordered pair ( a , b) is equal toA. `((1)/(5),-1)`B. `(-(1)/(5),0)`C. `(-(1)/(5),1)`D. `((1)/(5),0)` |
|
Answer» Correct Answer - d We have , `:. I_(4)+I_(6)=inttan^(4)dx+inttan^(6)x dx` `rArr I_(4)+I_(6)=int(tan^(4)x+tan^(6)x)dx` `rArrI_(4)+I_(6)=inttan^(4)x(1+tan^(2)x)dx` `rArr I_(4)+I_(6)=inttan^(4)xsec^(2)xdx =inttan^(4)xd (tanx)` `rArrI_(4)+I_(6)=(1)/(5)tan^(5)x+C` But, `I_(4)+I_(6)=atan^(5)x+bx^(5)+C` `:. a=(1)/(5),b=0` Hence , `( a ,b)=((1)/(5),0)` |
|