1.

Let R be a relation defined as a Rb if | a – b | > 0, then the relation is(a) Reflexive only (b) Symmetric only (c) Transitive only (d) Symmetric and transitive

Answer»

(d) Symmetric and transitive

| a – a | = | 0 | = 0 so (a, a) ∉R ⇒ R is not reflexive

(a, b) ∈ R ⇒ | a – b | > 0 ⇒ | b – a | > 0 ⇒ (b, a) ∈R           (∵ | a – b | = | b – a |) 

⇒ R is symmetric 

(a, b) ∈ R ⇒ | a – b | > 0 and (b, c) ∈ R ⇒ | b – c | > 0

V real numbers a, b, c. 

∴ | a – b | > 0 and | b – c | > 0 ⇒ | a – c | > 0 

⇒ (a, c) ∈ R ⇒ R is transitive.



Discussion

No Comment Found

Related InterviewSolutions