

InterviewSolution
Saved Bookmarks
1. |
Let R be a relation defined as a Rb if | a – b | > 0, then the relation is(a) Reflexive only (b) Symmetric only (c) Transitive only (d) Symmetric and transitive |
Answer» (d) Symmetric and transitive | a – a | = | 0 | = 0 so (a, a) ∉R ⇒ R is not reflexive (a, b) ∈ R ⇒ | a – b | > 0 ⇒ | b – a | > 0 ⇒ (b, a) ∈R (∵ | a – b | = | b – a |) ⇒ R is symmetric (a, b) ∈ R ⇒ | a – b | > 0 and (b, c) ∈ R ⇒ | b – c | > 0 V real numbers a, b, c. ∴ | a – b | > 0 and | b – c | > 0 ⇒ | a – c | > 0 ⇒ (a, c) ∈ R ⇒ R is transitive. |
|