1.

Let R be a relation on N x N defined by (a, b) R (c, d)a + d = b + c for all (a, b), (c, d)N x N. Show that :i. (a, b) R (a, b) for all (a, b) N x N ii. (a, b) R (c, d) (c, d) R (a, b) for all (a, b), (c, d) N x N iii. (a, b) R (c, d) and (c, d) R (e, f)(a, b) R (e, f) for all (a, b), (c, d), (e, f) N × N

Answer»

Given,

(a, b) R (c, d) a + d = b + c for all (a, b), (c, d)N x N 

i. (a, b) R (a, b) 

⇒ a + b = b + a for all (a, b) N x N 

∴ (a, b) R (a, b) for all (a, b) N x N 

ii. (a, b) R (c, d) 

⇒ a + d = b + c 

⇒ c + b = d + a 

⇒ (c, d) R (a, b) for all (c, d), (a, b) N x N 

iii. (a, b) R (c, d) and (c, d) R (e, f) 

a + d = b + c and c + f = d + e 

⇒ a + d + c + f = b + c + d + e 

⇒ a + f = b + c + d + e – c – d 

⇒ a + f = b + e

 ⇒ (a, b) R (e, f) for all (a, b), (c, d), (e, f) N × N



Discussion

No Comment Found

Related InterviewSolutions