1.

Let R be the region of the disc `x^(2)+y^(2) le 1` in the first quadrant. The the area of the largest possible circile contained in R isA. `pi(3-2sqrt(2))`B. `pi(4-3sqrt(2))`C. `(pi)/(6)`D. `pi(2sqrt(2)-2)`

Answer» Correct Answer - A
Required equation of circle
`(x-h)^(2)+(y-h)^(2)=h^(2)`
Both circle touch internally
`C_(1)C_(2)=|r_(1)-r_(2)|`
`sqrt(h^(2)+h^(2))=|h-1|`
Solve this `h=sqrt(2)-1`
Area `pi(sqrt(2)-1)^(2)=pi(3-2sqrt(2))`


Discussion

No Comment Found

Related InterviewSolutions