1.

Let R+ be the set of all non-negative real numbers. If f: R+ → R+ and g: R+ → R+ are defined as f(x) = x2 and g(x) = +√x, find fog and gof. Are they equal functions.

Answer»

Given that f: R+ → R+ and g: R+ → R+

Therefore, fog: R+ → R+ and gof: R+ → R+

Domains of fog and gof are the same.

Let us find fog and gof also we have to check whether they are equal or not,

Consider that (fog)(x) = f(g(x))

= f(√x)

= √x2

= x

Now consider that (gof)(x) = g(f(x))

= g(x2)

= √x2

= x

Therefore, (fog)(x) = (gof)(x), ∀ x ∈ R+

Hence, fog = gof 



Discussion

No Comment Found