Saved Bookmarks
| 1. |
Let rho(r) = (Q r)/(piR^4) be the charge density distributionfor a solid sphere of radius R and total charge Q. For a point P inside the sphere at a distance r_1 from the centre of the sphere, the magnitude of electric field is |
|
Answer» `Q/(4piepsilon_0r_1^2)` According to Gauss.s theorem `ointvecE.dvecs=q_"inside"/epsilon_0` `ointE DS COS 0^@=1/epsilon_0 int rho(r) xx dV` `E(4pir_1^2)xx1=(Qr_1)/(epsilon_0pir^4)xx(4/3pir_1^3)` `E=(Q. 4pir_1^4)/(3epsilon_0 . piR^4 (4pir_1^2))=(Qr_1^2)/(3piepsilon_0R^4)`
|
|