1.

Let Sn denote the sum of n terms of an A.P. whose first term is a. If the common difference d is given by d = Sn - k Sn-1 + Sn-2, then k =A. 1 B. 2 C. 3 D. none of these

Answer»

Option : (B)

We know,

Sn = Sn-2+an-1+an 

= Sn-2+a+(n-2)d+a+(n-1)d 

= Sn-2+2a+2nd-3d 

Also, 

Sn-1 = Sn-2+an-1 

= Sn-2+a+(n-2)d 

= Sn-2+a+nd-2d 

Now, 

d = Sn-kSn-1+Sn-2 

= Sn-2+2a+2nd-3d-k(Sn-2+a+nd-2d)+Sn-2 

= (2-k)[Sn-2+a+nd]+d(2k-3) 

Comparing coefficient of both the side we get, 

2-k = 0 and 2k-3 =1 

∴ k = 2



Discussion

No Comment Found