InterviewSolution
Saved Bookmarks
| 1. |
Let t be real number such that `t^2=at+b` for some positive integers a and b. Then forany choice of positive integers a and b.`t^3` is never equal toA. 4t+3B. 8t+5C. 10t+3D. 6t+5 |
|
Answer» Correct Answer - b `t^(2)=at+b,a,bin 1^(+)` `t^(3)=at^(2)+bt` a(at +b)+bt `a^(2)t+bt=bt` `Rightarrow t^(3)= (a^(2)+b) t +ab` , check possibilty for a,b, `in I^(+)` from options. `a^(2)+b=4` ab=3 possible (b) `a^(2)+b=8` ab=5 not possible (c) `a^(2) +b=10` ab = 3 possible (d) `a^(2) +b=6` ab=5 possible |
|