1.

Let the sequence ``real numbers satisfies the recurrence relation `b_(n+1)=1/3(2b_n+(125)/(b n2)),b_n!=0.`Then find the`("lim")_(nvecoo)b_ndot`

Answer» Correct Answer - C
Let `lim_(nto oo)b_(n)=b`. Then,
` b_(n+1)=(1)/(3)(2b_n+(125))/(b_(n^(2))), b_(n) ne 0`, then, `lim_(nto oo) b_n=` then, `lim_(nto oo) b_n=`
`rArr lim_(nto oo) b_(n+1)=(1)/(3) {2 lim_(nto oo) b_(n)+(125)/(lim_(nto oo) b_n^(2))}`
` rArr b=(1)/(3) {2b +(125)/(b^2)}`
` rArr (b)/(3)=(125)/(3b^2)rArr b^3=125rArr b=5`


Discussion

No Comment Found