1.

Let `vec a=hat i+hat j+hat k and vec b=i and vec c=c_1 hat i + hat c_2 j +c_3 hat k` Then(a) if `c_1 = 1 and c_2=2` , find `c_3` which makes ` vec a , vec b, vec c ` coplanar(b) if `c_2 = -1 and c_3= 1` , show that no value of `c_3` can makes ` vec a , vec b, vec c ` coplanar.

Answer» Here, `veca = hati+hatj+hatk`
`vecb = hati`
`vecc = c_1hati+c_2hatj+c_3hatk`
(i) As these trhree vectors are coplanar, ,their scalar product should be `0`.
`:. |[1,1,1],[1,0,0],[c_1,c_2,c_3]| = 0`
`=>-c_3+c_2 = 0`
`:.c_3 = c_2 = 2`
(ii)From first part,
`[vecavecbvecc] = -c_3+c_2`
`= -1+1 = -2`
So, scalar product of these three vectors is always `-2`.
So, no value of `c_1` can make these vectors coplanar.


Discussion

No Comment Found

Related InterviewSolutions