InterviewSolution
Saved Bookmarks
| 1. |
Let `veca=hati+hatj and vecb=2hati-hatk.` Then the point of intersection of the lines `vecrxxveca=vecbxxveca and vecrxxvecb=vecaxxvecb` is (A) `(3,-1,10` (B) `(3,1,-1)` (C) `(-3,1,1)` (D) `(-3,-1,-10`A. `hati-hatj+hatk`B. `3hati-hatj+hatk`C. `3hati+hatj-hatk`D. `hati-hatj-hatk` |
|
Answer» Correct Answer - c `vecrxxveca =vecbxxveca or (vecr-vecb) xxveca=0` `vecrxxvecb = vecaxx vecb or (vecr-veca) xx vecb=0` `if vecr=xhati + yhatj +zhatk`then `|{:(hati,hatj,hatk),(x-2,y,z+1),(1,1,0):}|=0and|{:(hati,hatj,hatk),(x-1,y-1,z),(2,0,-1):}|=0` `Rightarrow z+1=0,x-y=2` `and y-1=0,x-1+2z=0` `Rightarrow x=3,y=1,z=-1` |
|