InterviewSolution
Saved Bookmarks
| 1. |
Let `veca=hati-hatj, vecb=hatj-hatk, vecc=hatk-hati. If hatd` is a unit vector such that `veca.hatd=0=[vecb vecc vecd]` then `hatd` equalsA. `+- (hati + hatj - 2hatk)/sqrt6`B. `+- (hati + hatj - hatk)/sqrt3`C. `+- (hati + hatj + hatk)/sqrt3`D. `+- hatk` |
|
Answer» Correct Answer - a Let ` vecd= xhati + yhatj + zhatk` where `x^(2) + y^(2) +z^(2)=1` ( `vced ` being a unit vector) `veca .vced=0` ` Rightarrow x-y =0 or x=y` `[vecb vecc vecd]=0` `Rightarrow |{:(0,1,-1),(-1,0,1),(x,y,z):}|=0` or x+y +z=0 or 2x + z=0 or z= -2x From (i), (ii), and (iii) we have `x^(2) +x^(2)+4x^(2)=1` `x = +- 1/sqrt6` `vecd=+-(1/sqrt6hati1/sqrt6hatj-2/sqrt6hatk)` `= +- ((hati+hatj -2hatk)/sqrt6)` |
|