

InterviewSolution
Saved Bookmarks
1. |
Let `X=( ^(10)C_1)^2+2( ^(10)C_2)^2+3( ^(10)C_3)^2+ ddot +10( ^(10)C_(10))^2`, where ` ^(10)C_r`, `r in {1, 2, ddot, 10}`denote binomial coefficients. Then, the value of `1/(1430) X`is _________. |
Answer» We have, `X=(""^(10)C_(1))^(2)+2(""^(10)C_(2))^(2)+3(""^(10)C_(3))^(2)+...+10(""^(10)C_(10))^(2)` `impliesX=underset(r=1)overset(10)sumr(""^(10)C_(r))^(2)impliesX=underset(r=1)overset(10)sumr^(10)C_(r)""^(10)C_(r)` `impliesX=underset(r=1)overset(10)sumrxx(10)/(r)""^(9)C_(r-1)""^(10)C_(r)" "[because""^(n)C_(r)=(n)/(r)""^(n-1)C_(r-1)]` `impliesX=10underset(r=1)overset(10)sum""^(9)C_(r-1)""^(10)C_(r)` `impliesX=10underset(r=1)overset(10)sum""^(9)C_(r-1)""^(10)C_(r)" "[because""^(n)C_(r)=""^(n)C_(n-r)]` `impliesX=10xx""^(19)C_(9)" "[because""^(n-1)C_(r-1)""^(n)C_(n-r)=""^(2n-1)C_(n-1)]` Now, `(1)/(1430)X=(10xx""^(19)C_(9))/(1430)=(""^(19)C_(9))/(148)=(""^(19)C_(9))/(11xx13)` `=(19xx17xx16)/(8)=19xx34=646` |
|