1.

Let X be be a ninempty set and let P(X) denote the collection of all subsets of X. Define `f : X xx P(X) rarr` by `f(x, A)={(1",",if,x in A),(0",",if,x notin A):}` Then `f(x, A uu B)` equals-A. `f(x, A)+f(x, B)`B. `f(x, A)+f(x, B)-1`C. `f(x, A)+f(x, B)-f(x, A) f(x, B)`D. `f(x, A)+|f(x, A)-f(x, B)|`

Answer» Correct Answer - C
`f(x, A uuB)={(1,if,x in A uu B),(0,if,x notin A uu B):}`
`{:(if,x in A",",x in B),(if,x in A",",x notinB),(if,x notin A",",x in B):}} {:(rArr f(x, A uu B)=1rArr" None of the option (A, B, D) satisfy"),(),():}`
if `x notin A, x notin B rArr f(x, A uu B)=0 rArr C("only C satisfy")`


Discussion

No Comment Found

Related InterviewSolutions