InterviewSolution
Saved Bookmarks
| 1. |
Let (x,y) be a variable point on the curve `4x^(2)+9y^(2)-8x-36y+15=0`. Then min`(x^(2)-2x+y^(2)-4y+5)+"max"(x^(2)-2x+y^(2)-4y+5)` is-(A) `325/36 ` (B) ` 36/325 ` (C) ` 13/25 ` (D) `25/13 `A. `(325)/(36)`B. `(36)/(325)`C. `(13)/(25)`D. `(25)/(13)` |
|
Answer» Correct Answer - A `4x^(2)+9y^(2)-8y-36y+15=0` `4(x^(2)-2y)+9(y^(2)-4y)=-15` `4(x^(2)-2x+1)+9(y^(2)-4y+4=-15+4+36` `4(x-1)^(2)+9(y-2)^(2)=25` `((x-a)^(2))/(((5)/(2))^(2))+((y-2)^(2))/(((5)/(3))^(2))=1`……….(1) `x^(2)-2x+y^(2)-4y+5` `(x-1)^(2)+(y-2)^(2)` min of `((x-1)^(2)+(y-2)^(2))=(25)/(9)` max of `((x-1)^(2)+(y-2)^(2))=(25)/(4)` `=(25)/(9)+(25)/(4)=(325)/(36)` |
|