1.

Let Y be a subspace of a metric space (X, d). Then ⊆ is open in Y if and only if =∩ forsome open subset G of X.

Answer»

Answer:

LET Y be a SUBSPACE of a METRIC space (X, d). Then ⊆ is open in Y if and only if =∩ for

some open subset G of X.

Step-by-step EXPLANATION:

Let Y be a subspace of a metric space (X, d). Then ⊆ is open in Y if and only if =∩ for

some open subset G of X.Let Y be a subspace of a metric space (X, d). Then ⊆ is open in Y if and only if =∩ for

some open subset G of X.Let Y be a subspace of a metric space (X, d). Then ⊆ is open in Y if and only if =∩ for

some open subset G of X.Let Y be a subspace of a metric space (X, d). Then ⊆ is open in Y if and only if =∩ for

some open subset G of X.Let Y be a subspace of a metric space (X, d). Then ⊆ is open in Y if and only if =∩ for

some open subset G of X.Let Y be a subspace of a metric space (X, d). Then ⊆ is open in Y if and only if =∩ for

some open subset G of X.Let Y be a subspace of a metric space (X, d). Then ⊆ is open in Y if and only if =∩ for

some open subset G of X.Let Y be a subspace of a metric space (X, d). Then ⊆ is open in Y if and only if =∩ for

some open subset G of X.Let Y be a subspace of a metric space (X, d). Then ⊆ is open in Y if and only if =∩ for

some open subset G of X.Let Y be a subspace of a metric space (X, d). Then ⊆ is open in Y if and only if =∩ for

some open subset G of X.Let Y be a subspace of a metric space (X, d). Then ⊆ is open in Y if and only if =∩ for

some open subset G of X.Let Y be a subspace of a metric space (X, d). Then ⊆ is open in Y if and only if =∩ for

some open subset G of X.Let Y be a subspace of a metric space (X, d).

Let Y be a subspace of a metric space (X, d). Then ⊆ is open in Y if and only if =∩ for

some open subset G of X.



Discussion

No Comment Found

Related InterviewSolutions