1.

Let `z_1 and z_2` be two complex numbers satisfying `|z_1|=9` and `|z_2-3-4i|=4` Then the minimum value of `|z_1-Z_2|` isA. 1B. 2C. `sqrt(2)`D. 0

Answer» Correct Answer - D
Clearly `|z_1|=9 ` represents a circle having centre `C_1(0,0)` and radius `r_1=9`
and `|z_2-3-4i|=4` represents a circle having centre `C_2(3,4)` and radius `r_2=4`
The minimum value of f`|z_1-z_2| ` is equals to minimum distance between circless `|z_1|=9` and `|z_2-3-4i|=4`
`therefore C_1 C_2= sqrt((3-0)^2(4-0)^2)= sqrt(25)=5`
and `|r_1-r_2|=|9-4|=5 rArr C_1C_2 = |r_1-r_2|`
`therefore `Circles touches each other internally .
Hence , `|z_1-z_2|_(min)=0`


Discussion

No Comment Found

Related InterviewSolutions