1.

Let `z=x+i y`be a complex number where `xa n dy`are integers. Then, the area of the rectangle whose vertices are theroots of the equation `z z ^3+ z z^3=350`is48 (b)32 (c) 40(d) 80A. 48B. 32C. 40D. 80

Answer» Correct Answer - A
`zbarz(barz^(2) + z^(2))= 350`
Putting z +iy, we have
`(x^(2) + y^(2)) (x^(2) -y^(2)) = 175`
`(x^(2) + y^(2)) (x^(2) -y^(2)) = 5 xx 5xx7`
`x^(2)+ y^(2) = 25`
`and x^(2) -y^(2) = 7`
(as other combinations given non-intergral values of x and y )
`therefore x = pm 4, y = pm 3 (x,y in I)`
Hence, area is `8 xx 6 = 48` sq . units


Discussion

No Comment Found

Related InterviewSolutions