InterviewSolution
Saved Bookmarks
| 1. |
`lim_(x to 0) (sin(x^(2)))/("ln"(cos(2x^(2)-x)))` is equal toA. `e^(a)`B. `-a`C. `e^(1-a)`D. `e^(1+a)` |
|
Answer» Correct Answer - B `underset(xto0)lim(sin(x^(2)))/("ln"(cos(2x^(2)-x)))` `=underset(xto0)lim(sin(x^(2)))/(log(1-2sin^(2)((2x^(2)-x)/(2))))` `=underset(xto0)lim(sin(x^(2))x^(2))/((x^(2)log(1-2sin^(2)((2x^(2)-x)/(2))))/(-2sin^(2)((2x^(2)-x)/(2)))[-2sin^(2)((2x^(2)-x)/(2))])` `=underset(xto0)lim-(x^(2))/((2sin^(2)((2x^(2)-x)/(2)))/(((2x^(2)-x)/(2))^(2))((2x^(2)-x)/(2))^(2))` `=underset(xto0)lim-(2x^(2))/((2x^(2)-x)^(2))=underset(xto0)lim-(2)/((2x-1)^(2))=-2` |
|