1.

`lim_(x to 0) (sin(x^(2)))/("ln"(cos(2x^(2)-x)))` is equal toA. `e^(a)`B. `-a`C. `e^(1-a)`D. `e^(1+a)`

Answer» Correct Answer - B
`underset(xto0)lim(sin(x^(2)))/("ln"(cos(2x^(2)-x)))`
`=underset(xto0)lim(sin(x^(2)))/(log(1-2sin^(2)((2x^(2)-x)/(2))))`
`=underset(xto0)lim(sin(x^(2))x^(2))/((x^(2)log(1-2sin^(2)((2x^(2)-x)/(2))))/(-2sin^(2)((2x^(2)-x)/(2)))[-2sin^(2)((2x^(2)-x)/(2))])`
`=underset(xto0)lim-(x^(2))/((2sin^(2)((2x^(2)-x)/(2)))/(((2x^(2)-x)/(2))^(2))((2x^(2)-x)/(2))^(2))`
`=underset(xto0)lim-(2x^(2))/((2x^(2)-x)^(2))=underset(xto0)lim-(2)/((2x-1)^(2))=-2`


Discussion

No Comment Found