InterviewSolution
Saved Bookmarks
| 1. |
`lim_(xrarr oo) (logx)/([x])` , where `[.]` denotes the greatest integer function, is |
|
Answer» Correct Answer - A We have `x-1lt[x]ge x " for all " x in R` ` rArr (1)/(x)le (1)/([x])lt (1)/(x-1) " for all " x in R -{0,1}` ` rArr (logx)/(x)le (logx)/([x]) lt (logx)/(x-1)[ because log x gt 0 " as "x to oo]` ` rArr lim_(xto oo) le lim_(xto oo) (log x)/([x])lt lim_(xle oo) (logx)/(x-1)` ` rArr lim_(xto oo) (log x)/([x]) =0 [because lim_(xto oo) (logx)/(x) =lim_(xto oo) (log x)/(x-1)=0]` |
|