InterviewSolution
Saved Bookmarks
| 1. |
`lim_(xrarr oo) (n^p sin^2(n!))/(n+1),0ltplt1`, is equal to |
|
Answer» Correct Answer - A We have , `lim_(xto oo) (n^p sin^2(n!))/(n+1)=lim_(ntooo)(sin^2(n!))/(1+(1)/(n))xxn^(p-1)` `lim_(xto oo) (n^p sin^2(n!))/(n+1)=lim_(ntooo)(sin^2(n!))/(n^(1-p))xx(1)/(1+(1)/(n))` ` rArr lim_(xto oo) (n^p sin^2(n!))/(n+1)=("An oscillating number")/(oo) xx1=0xx1=0`. |
|