InterviewSolution
Saved Bookmarks
| 1. |
`lim _(xrarr oo) (sqrt(x^2+x+1)-sqrt(x^2+1))=`A. `-(1)/(2)`B. `(1)/(2)`C. `1`D. `-1` |
|
Answer» Correct Answer - B Here , the expression assumes the form `oo-oo` as `xto oo`.So, we reduce it to the rational form `(f(x))/(8(x))`. We have, `lim _(xto oo) sqrt(x^2+x+)-sqrt(x^2+1)` `lim _(xto oo) ({sqrt(x^2+x+1)-sqrt(x^2+1)}{sqrt(x^2+x+1)+sqrt(x^2+1)})/(sqrt(x^2+x+1)+sqrt(x^2+1))` `lim _(xto oo) (x^2+x+1-x^2-1)/(sqrt(x^2+x+1)+sqrt(x^2+1))=lim_(x to oo)(x)/(sqrt(x^2+x+1)+sqrt(x^2+1))` `=lim_(x to oo) (1)/(sqrt(1+(1)/(x)+(1)/(x^2))+sqrt(1+(1)/(x^2)))` `=(1)/(1+1)=(1)/(2)`. `[{:("Dividing " N^2,),(and D^r" by " x,):}]` |
|