InterviewSolution
Saved Bookmarks
| 1. |
`lim_(xto-1) (1)/(sqrt(|x|-{-x}))` (where `{x}` denotes the fractional part of x) is equal toA. 16B. 24C. 32D. 8 |
|
Answer» Correct Answer - A L.H.L.`=underset(xto-1^(-))lim(1)/(sqrt(|x|-{-x}))=underset(xto-1^(-))lim(1)/(sqrt(-x-(x+2)))` `=underset(xto-1^(-))lim(1)/(sqrt(-2x-2))=oo` R.H.L.`=underset(xto-1^(+))lim(1)/(sqrt(|x|-{-x}))=underset(xto-1^(-))lim(1)/(sqrt(-x-(x+1)))` `=underset(xto-1^(-))lim(1)/(sqrt(-2x-1))=1` Hence, the limit does not exist. |
|