1.

`lim_(xto0) [(sin(sgn(x)))/((sgn(x)))],` where `[.]` denotes the greatest integer function, is equal toA. `^(2n)p_(n)`B. `^(2n)C_(n)`C. `(2n)!`D. none of these

Answer» Correct Answer - A
`underset(xto0^(+))lim[(sin(sgnx))/(sgn(x))]=underset(xto0^(+))lim[(sin1)/(1)]=0`
`underset(xto0^(-))lim[(sin(sgnx))/(sgn(x))]`
`=underset(xto0^(-))lim[sin(-1)/(-1)]`
`=underset(xto0^(-))lim[sin1]`
Hence, the given limit is 0.


Discussion

No Comment Found